7,916 research outputs found

    Isolation of p-hydroxycinnamaldehyde as an antibacterial substance from the saw fly, Acantholyda parki S.

    Get PDF
    AbstractWe purified an antibacterial substance from larvae of the saw fly, Acantholyda parki S., and identified its molecular structure as p-hydroxycinnamaldehyde. We then synthesized it by reduction of p-hydroxycinnamic acid. The antibacterial activity of the synthetic p-hydroxycinnamaldehyde was equal to that of the authentic substance. This molecule was found to have a broad antibacterial spectrum against not only Gram-negative, but also Gram-positive bacteria. Furthermore, it showed antifungal activity against Candida albicans. We suggest that this substance may play a role in the defense system of this insect. This is the first report of p-hydroxycinnamaldehyde of animal origin

    Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery

    Get PDF
    We propose a microfluidic system that generates nanovesicles (NVs) by slicing living cell membrane with microfabricated 500 nm-thick silicon nitride (SixNy) blades. Living cells were sliced by the blades while flowing through microchannels lined with the blades. Plasma membrane fragments sliced from the cells self-assembled into spherical NVs of similar to 100-300 nm in diameter. During self-assembly, the plasma membrane fragments enveloped exogenous materials (here, polystyrene latex beads) from the buffer solution. About 30% of beads were encapsulated in NVs,, and the generated NVs delivered the encapsulated beads across the plasma membrane of recipient cells, but bare beads could not penetrate the plasma membrane of recipient cells. This result implicates that the NVs generated using the method in this study can encapsulate and deliver exogenous materials to recipient cells, whereas exosomes secreted by cells can deliver only endogenous cellular materials. (C) 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).X112015Ysciescopu

    Study on Multi-Point Stretch Forming Process for Double Curved Surface

    Get PDF
    Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal

    Caroli's Syndrome with Autosomal Recessive Polycystic Kidney Disease in a Two Month Old Infant

    Get PDF
    Caroli's syndrome is a rare congenital disorder that involves intrahepatic bile duct ectasia and congenital hepatic fibrosis, frequently seen with concomitant autosomal recessive polycystic kidney disease (ARPKD). Literature on infants with ARPKD is rare. Here, we present a case of a two month old boy who was diagnosed with Caroli's syndrome and ARPKD

    A lab-on-a-disc platform enables serial monitoring of individual CTCs associated with tumor progression during EGFR-targeted therapy for patients with NSCLC

    Get PDF
    Rationale: Unlike traditional biopsy, liquid biopsy, which is a largely non-invasive diagnostic and monitoring tool, can be performed more frequently to better track tumors and mutations over time and to validate the efficiency of a cancer treatment. Circulating tumor cells (CTCs) are considered promising liquid biopsy biomarkers; however, their use in clinical settings is limited by high costs and a low throughput of standard platforms for CTC enumeration and analysis. In this study, we used a label-free, high-throughput method for CTC isolation directly from whole blood of patients using a standalone, clinical setting-friendly platform. Methods: A CTC-based liquid biopsy approach was used to examine the efficacy of therapy and emergent drug resistance via longitudinal monitoring of CTC counts, DNA mutations, and single-cell-level gene expression in a prospective cohort of 40 patients with epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer. Results: The change ratio of the CTC counts was associated with tumor response, detected by CT scan, while the baseline CTC counts did not show association with progression-free survival or overall survival. We achieved a 100% concordance rate for the detection of EGFR mutation, including emergence of T790M, between tumor tissue and CTCs. More importantly, our data revealed the importance of the analysis of the epithelial/mesenchymal signature of individual pretreatment CTCs to predict drug responsiveness in patients. Conclusion: The fluid-assisted separation technology disc platform enables serial monitoring of CTC counts, DNA mutations, as well as unbiased molecular characterization of individual CTCs associated with tumor progression during targeted therapy
    corecore